Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Eur J Neurol ; 24(11): 1363-1368, 2017 11.
Article En | MEDLINE | ID: mdl-28834018

BACKGROUND AND PURPOSE: Mutations in the glucocerebrosidase (GBA) gene are known to be a risk factor for Parkinson's disease (PD). Data on clinicopathological correlation are limited. The purpose of this study was to determine the clinicopathological findings that might distinguish PD cases with and without mutations in the GBA gene. METHODS: Data from the Arizona Study of Aging and Neurodegenerative Disorders were used to identify autopsied PD cases that did or did not have a GBA gene mutation. Clinical and neuropathological data were compared. RESULTS: Twelve PD cases had a GBA mutation and 102 did not. The GBA mutation cases died younger (76 vs. 81 years of age) but there was no difference in disease duration or clinical examination findings. No neuropathological differences were found in total or regional semi-quantitative scores for Lewy-type synucleinopathy, senile plaques, neurofibrillary tangles, white matter rarefaction or cerebral amyloid angiopathy scores. CONCLUSIONS: In longitudinally assessed, autopsied PD cases, those with GBA mutations had a younger age at death but there was no evidence for clinical or neuropathological differences compared to cases without GBA mutations. Due to the small GBA group size, small differences cannot be excluded.


Brain/pathology , Glucosylceramidase/genetics , Mutation , Parkinson Disease/genetics , Age Factors , Aged , Aged, 80 and over , Female , Humans , Longevity/genetics , Longitudinal Studies , Male , Parkinson Disease/pathology , Risk Factors
2.
Eur J Neurol ; 23(2): 387-92, 2016 Feb.
Article En | MEDLINE | ID: mdl-26518336

BACKGROUND AND PURPOSE: It is believed that progressive Lewy-type synucleinopathy (LTS) is primarily responsible for the worsening of motor and non-motor Parkinson's disease (PD) signs and symptoms. Characterization of quantitative electroencephalography (QEEG) abnormalities across the spectrum of LTS to PD dementia (PD-D) may provide insight into the pathophysiology of PD cortical dysfunction. Here our enlarged EEG database was leveraged to characterize spectral QEEG abnormalities in asymptomatic autopsy-defined groups of control participants and incidental Lewy body disease (ILBD) and three clinically defined groups of participants with PD (cognitively normal PD, mild cognitive impairment PD, and PD-D). METHODS: The PD cohort was studied as part of the Arizona Study of Aging and Neurodegenerative Disorders (AZSAND). AZSAND utilizes its Brain and Body Donation Program to perform prospective, standardized, regular longitudinal pre-mortem assessments until death. Resting EEG from subjects was analyzed for spectral domain QEEG measures of background rhythm frequency and global relative power in delta, theta, alpha and beta bands. RESULTS: The various spectral QEEG measures showed differential changes specific to the groups compared. Important findings were background rhythm frequency showing the most pairwise differences across the groups, and this also was the only significant difference between control and ILBD. An increase in delta bandpower was characteristic of worsening cognitive deficits. CONCLUSIONS: Different patterns of change amongst QEEG measures across LTS and PD cognitive states suggest that they correlate with heterogeneous pathophysiologies of cortical dysfunction within the PD clinical spectrum. In addition, the biomarker application of a specific spectral QEEG measure needs to be selectively suited to its study purpose.


Brain/physiopathology , Electroencephalography/methods , Lewy Body Disease/physiopathology , Parkinson Disease/physiopathology , Aged , Aged, 80 and over , Biomarkers , Diagnosis, Differential , Female , Humans , Male , Middle Aged
3.
Neuropathol Appl Neurobiol ; 38(2): 142-52, 2012 Apr.
Article En | MEDLINE | ID: mdl-21696423

AIMS: Rapid eye movement sleep behaviour disorder (RBD) is characterized by loss of muscle atonia during rapid eye movement sleep and is associated with dream enactment behaviour. RBD is often associated with α-synuclein pathology, and we examined if there is a relationship of RBD with cholinergic neuronal loss in the pedunculopontine/laterodorsal tegmental nucleus (PPN/LDT), compared to catecholaminergic neurones in a neighbouring nucleus, the locus coeruleus (LC). METHODS: This retrospective study utilized human brain banked tissues of 11 Lewy body disease (LBD) cases with RBD, 10 LBD without RBD, 19 Alzheimer's disease (AD) and 10 neurologically normal controls. Tissues were stained with choline acetyl transferase immunohistochemistry to label neurones of PPN/LDT and tyrosine hydroxylase for the LC. The burden of tau and α-synuclein pathology was measured in the same regions with immunohistochemistry. RESULTS: Both the LC and PPN/LDT were vulnerable to α-synuclein pathology in LBD and tau pathology in AD, but significant neuronal loss was only detected in these nuclei in LBD. Greater cholinergic depletion was found in both LBD groups, regardless of RBD status, when compared with normals and AD. There were no differences in either degree of neuronal loss or burden of α-synuclein pathology in LBD with and without RBD. CONCLUSIONS: Whether decreases in brainstem cholinergic neurones in LBD contribute to RBD is uncertain, but our findings indicate these neurones are highly vulnerable to α-synuclein pathology in LBD and tau pathology in AD. The mechanism of selective α-synuclein-mediated neuronal loss in these nuclei remains to be determined.


Brain Stem/pathology , Catecholamines/metabolism , Cholinergic Agents/metabolism , REM Sleep Behavior Disorder/metabolism , REM Sleep Behavior Disorder/pathology , Aged , Aged, 80 and over , Brain Stem/metabolism , Female , Humans , Lewy Body Disease/diagnosis , Lewy Body Disease/pathology , Locus Coeruleus/metabolism , Male , Nervous System Diseases/diagnosis , Nervous System Diseases/metabolism , Neurons/metabolism , Neurons/pathology , REM Sleep Behavior Disorder/diagnosis , Retrospective Studies , alpha-Synuclein/metabolism
4.
Neurology ; 77(9): 875-82, 2011 Aug 30.
Article En | MEDLINE | ID: mdl-21849645

OBJECTIVE: To determine whether adding REM sleep behavior disorder (RBD) to the dementia with Lewy bodies (DLB) diagnostic criteria improves classification accuracy of autopsy-confirmed DLB. METHODS: We followed 234 consecutive patients with dementia until autopsy with a mean of 4 annual visits. Clinical diagnoses included DLB, Alzheimer disease (AD), corticobasal syndrome, and frontotemporal dementia. Pathologic diagnoses used the 2005 DLB consensus criteria and included no/low likelihood DLB (non-DLB; n = 136) and intermediate/high likelihood DLB (DLB; n = 98). Regression modeling and sensitivity/specificity analyses were used to evaluate the diagnostic role of RBD. RESULTS: Each of the 3 core features increased the odds of autopsy-confirmed DLB up to 2-fold, and RBD increased the odds by 6-fold. When clinically probable DLB reflected dementia and 2 or more of the 3 core features, sensitivity was 85%, and specificity was 73%. When RBD was added and clinically probable DLB reflected 2 or more of 4 features, sensitivity improved to 88%. When dementia and RBD were also designated as probable DLB, sensitivity increased to 90% while specificity remained at 73%. The VH, parkinsonism, RBD model lowered sensitivity to 83%, but improved specificity to 85%. CONCLUSIONS: Inclusion of RBD as a core clinical feature improves the diagnostic accuracy of autopsy-confirmed DLB.


Lewy Body Disease/classification , Lewy Body Disease/diagnosis , REM Sleep Behavior Disorder/diagnosis , Activities of Daily Living , Cohort Studies , Female , Follow-Up Studies , Humans , Lewy Body Disease/complications , Male , Prospective Studies , REM Sleep Behavior Disorder/complications , Surveys and Questionnaires
5.
Neurobiol Dis ; 40(3): 503-17, 2010 Dec.
Article En | MEDLINE | ID: mdl-20659558

Mutations in the Leucine Rich Repeat Kinase 2 (LRRK2) gene, first described in 2004 have now emerged as the most important genetic finding in both autosomal dominant and sporadic Parkinson's disease (PD). While a formidable research effort has ensued since the initial gene discovery, little is known of either the normal or the pathological role of LRRK2. We have created lines of mice that express human wild-type (hWT) or G2019S Lrrk2 via bacterial artificial chromosome (BAC) transgenesis. In vivo analysis of the dopaminergic system revealed abnormal dopamine neurotransmission in both hWT and G2019S transgenic mice evidenced by a decrease in extra-cellular dopamine levels, which was detected without pharmacological manipulation. Immunopathological analysis revealed changes in localization and increased phosphorylation of microtubule binding protein tau in G2019S mice. Quantitative biochemical analysis confirmed the presence of differential phospho-tau species in G2019S mice but surprisingly, upon dephosphorylation the tau isoform banding pattern in G2019S mice remained altered. This suggests that other post-translational modifications of tau occur in G2019S mice. We hypothesize that Lrrk2 may impact on tau processing which subsequently leads to increased phosphorylation. Our models will be useful for further understanding of the mechanistic actions of LRRK2 and future therapeutic screening.


Brain/metabolism , Protein Serine-Threonine Kinases/genetics , Synaptic Transmission/physiology , tau Proteins/metabolism , Animals , Autoradiography , Chromatography, High Pressure Liquid , Chromosomes, Artificial, Bacterial , Dopamine/metabolism , Humans , Immunoblotting , In Situ Hybridization , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Male , Mice , Mice, Transgenic , Microdialysis , Phosphorylation , Protein Processing, Post-Translational , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Reverse Transcriptase Polymerase Chain Reaction
6.
Neurology ; 73(2): 106-12, 2009 Jul 14.
Article En | MEDLINE | ID: mdl-19597132

BACKGROUND: Experimental studies indicate that dopaminergic neurons in the ventral periaqueductal gray matter (PAG) are involved in maintenance of wakefulness. Excessive daytime sleepiness (EDS) is a common manifestation of multiple system atrophy (MSA) and dementia with Lewy bodies (DLB) but involvement of these neurons has not yet been explored. METHODS: We sought to determine whether there is loss of dopaminergic neurons in the ventral PAG in MSA and DLB. We studied the midbrain obtained at autopsy from 12 patients (9 male, 3 female, age 61 +/- 3) with neuropathologically confirmed MSA, 12 patients (11 male, 1 female, age 79 +/- 4) with diagnosis of DLB and limbic or neocortical Lewy body disease, and 12 controls (7 male, 5 female, ages 67 +/- 4). Fifty-micron sections were immunostained for tyrosine hydroxylase (TH) or alpha-synuclein and costained with thionin. Cell counts were performed every 400 mum throughout the ventral PAG using stereologic techniques. RESULTS: Compared to the total estimated cell numbers in controls (21,488 +/- 8,324 cells), there was marked loss of TH neurons in the ventral PAG in both MSA (11,727 +/- 5,984; p < 0.01) and DLB (5,163 +/- 1,926; p < 0.001) cases. Cell loss was more marked in DLB than in MSA. There were characteristic alpha-synuclein inclusions in the ventral PAG in both MSA and DLB. CONCLUSIONS: There is loss of putative wake-active ventral periaqueductal gray matter dopaminergic neurons in both multiple system atrophy and dementia with Lewy bodies, which may contribute to excessive daytime sleepiness in these conditions.


Dopamine/metabolism , Lewy Body Disease/pathology , Multiple System Atrophy/pathology , Neurons/pathology , Periaqueductal Gray/pathology , Aged , Aged, 80 and over , Cell Count , Cell Death , Female , Humans , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Lewy Body Disease/metabolism , Male , Mesencephalon/metabolism , Mesencephalon/pathology , Middle Aged , Multiple System Atrophy/metabolism , Neurons/metabolism , Periaqueductal Gray/metabolism , Thionins/metabolism , Tyrosine 3-Monooxygenase/metabolism , alpha-Synuclein/metabolism
...